V = 4761.6 (5) Å³

Mo $K\alpha$ radiation

 $0.32 \times 0.20 \times 0.20$ mm

16149 measured reflections

5526 independent reflections

4640 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.41 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.073$

refinement $\Delta \rho_{\text{max}} = 0.74 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.79 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tris(1,10-phenanthroline)tris(μ_3 -succinato)tricadmium(II)] tetrahydrate]

Xiao-Yan Wang,^{a,b} Xiao-Tao Deng,^c Cheng-Gang Wang^a* and Min Wang^a

^aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, ^bChemistry and Biology Department, West Anhui University, Liu an, Anhui 237000, People's Republic of China, and ^cGuangzhou No. 6 Middle School, Guangzhou, Guandong 510300, People's Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Received 12 October 2007; accepted 18 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.035; *wR* factor = 0.073; data-to-parameter ratio = 16.1.

The title complex, $\{[Cd_3(C_4H_4O_4)_3(C_{12}H_8N_2)_3]\cdot 4H_2O\}_n$, has been isolated from the hydrothermal reaction of cadmium acetate with 1,10-phenanthroline (phen) and succinic acid. The structure features two-dimensional networks formed by succinate ligands bridging Cd atoms in two different coordination modes. A twofold rotation axis passes through one Cd atom. In one coordination mode, the Cd atoms are in a distorted octahedral CdO₄N₂ arrangement and the coordination atoms come from one phen ligand and two succinate ligands. In the other coordination mode, the Cd atoms are in the decahedral CdO₅N₂ geometries and the coordination atoms come from one phen ligand and three succinate ligands.

Related literature

For related literature, see: Zheng & Lin (2001).

Experimental

Crystal data

 $\begin{bmatrix} Cd_3(C_4H_4O_4)_3(C_{12}H_8N_2)_3 \end{bmatrix} \cdot 4H_2O \\ M_r = 1298.09 \\ Monoclinic, C2/c \\ a = 11.1875 (6) Å \\ b = 21.4051 (15) Å \\ c = 20.2455 (12) Å \\ \beta = 100.847 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.662, T_{\rm max} = 0.766$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$
$wR(F^2) = 0.073$
S = 0.97
5526 reflections
343 parameters
4 restraints

Table 1Hydrogen-bond geometry (Å, °).

	$D = H \cdots A$
$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$	2 11 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174 (5) 172 (4) 169 (4) 174 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, -y + 1, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXTL* (Bruker, 1997).

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology (grant No. RCT2004011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2314).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). *SMART* (Version 6.10) and *SAINT* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Zheng, Y. Q. & Lin, J. L. (2001). Z. Kristallogr. New Cryst. Struct. 216, 139-140.

Acta Cryst. (2007). E63, m2889 [doi:10.1107/S1600536807051665]

Poly[[tris(1,10-phenanthroline)tris(#3-succinato)tricadmium(II)] tetrahydrate]

X.-Y. Wang, X.-T. Deng, C.-G. Wang and M. Wang

Comment

Succinic acid is a flexible bridging spacer to constitute coordination polymers. The simultaneous coordination of hydroxide and succinate groups to transition metal atoms tends to form coordination polymers with three-dimensional open framework [Zheng *et al.* (2001)]. Introduction of a second competing ligand such as phen has been found to lower the dimensionality of the structure since its chelation to the metal ion leaves fewer sites for succinate coordination. In structure (I), the Cd atoms are in the distorted octahedral CdO_4N_2 and decahedral CdO_5N_2 geometries. (Fig. 1) The succinato ligands have two coordination modes (Fig. 2). In the first mode, the carboxylate group bidentately bridges two Cd atoms. In the other mode, one chelating O atom bonds to the second Cd atom. The Cd atoms are interlinked by the succinate ligands to generate two-dimensional networks, in which existing stacking interactions between phen rings and hydrogen bonds.

Experimental

A mixture of Cd(CH₃COO)₂ 2 H₂O (0.266 g, 1 mmol), succinic acid (0.465 g, 4 mmol), 1,10-phenanthroline hydrate (0.396 g, 2 mmol) and H₂O (10 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 453 K for 72 h. Colorless block-shape crystals of the title complex were obtained.

Refinement

H atoms bonded to O atoms were located in difference maps and then included in the refinement with bond-length restraints of O–H = 0.82 (2) Å, with $U_{iso}(H)$ = 1.5 U_{eq} All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93 and 0.97 Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ or 1.5 U_{eq} .

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The H atoms and water molecules have been omitted for clarity. [symmety codes:(a) $-x_{,y}$, 1/2 - z;(b) $1 - x_{,y}$, 1/2 - z; (d) $-x_{,y}$, 1 - z]

Fig. 2. The molecular structure of (I), showing two-dimensional networks omitting water molecules and phen ligands.

Poly[[[(1,10-phenanthroline)cadmium(II)]-μ-succnicate-κ⁴O,O,O'O'] hydrate]

 $F_{000} = 2584$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 28.2^{\circ}$

 $\mu = 1.41 \text{ mm}^{-1}$

T = 298 (2) K

Block, colorless

 $0.32 \times 0.20 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.811 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 6336 reflections

Crystal data

 $[Cd_{3}(C_{4}H_{4}O_{4})_{3}(C_{12}H_{8}N_{2})_{3}]\cdot 4H_{2}O$ $M_{r} = 1298.09$ Monoclinic, C2/c Hall symbol: -C 2yc a = 11.1875 (6) Å b = 21.4051 (15) Å c = 20.2455 (12) Å $\beta = 100.8470$ (10)° V = 4761.6 (5) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	5526 independent reflections
Radiation source: fine-focus sealed tube	4640 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
T = 298(2) K	$\theta_{\text{max}} = 27.8^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.662, \ T_{\max} = 0.766$	$k = -22 \rightarrow 27$
16149 measured reflections	$l = -18 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_0^2) + (0.0314P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} = 0.002$
5526 reflections	$\Delta \rho_{max} = 0.74 \text{ e } \text{\AA}^{-3}$
343 parameters	$\Delta \rho_{\rm min} = -0.78 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.00223 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.5000	0.450298 (13)	0.2500	0.03689 (9)
Cd2	0.785266 (16)	0.558555 (9)	0.372822 (9)	0.02702 (8)
N1	0.4185 (2)	0.36355 (11)	0.18944 (13)	0.0408 (6)
N2	0.73872 (19)	0.66078 (10)	0.33202 (11)	0.0320 (5)
N3	0.86461 (19)	0.63215 (11)	0.45773 (11)	0.0324 (5)
01	0.63997 (18)	0.46118 (10)	0.18172 (10)	0.0470 (5)
02	0.66807 (15)	0.51931 (9)	0.27212 (9)	0.0328 (4)
03	1.0882 (2)	0.46530 (13)	0.15096 (13)	0.0661 (7)
O4	1.01226 (19)	0.56006 (11)	0.14051 (11)	0.0531 (6)
05	0.59517 (19)	0.55649 (11)	0.41393 (12)	0.0566 (7)
O6	0.74168 (19)	0.49423 (10)	0.45879 (11)	0.0498 (5)
C1	0.7021 (2)	0.50054 (12)	0.21886 (13)	0.0296 (6)
C2	0.8143 (2)	0.52649 (13)	0.19883 (13)	0.0321 (6)
H2A	0.8672	0.5432	0.2384	0.038*
H2B	0.7914	0.5607	0.1676	0.038*
C3	0.8840 (2)	0.47844 (15)	0.16635 (17)	0.0467 (8)
H3A	0.9004	0.4426	0.1960	0.056*
H3B	0.8332	0.4644	0.1248	0.056*
C4	1.0029 (3)	0.50216 (17)	0.15113 (14)	0.0446 (8)
C5	0.3448 (3)	0.36281 (16)	0.13045 (17)	0.0515 (8)
Н5	0.3145	0.4007	0.1121	0.062*
C6	0.3099 (3)	0.30888 (18)	0.09421 (18)	0.0598 (9)
H6	0.2596	0.3108	0.0521	0.072*
C7	0.3511 (3)	0.25281 (17)	0.12167 (18)	0.0571 (9)
H7	0.3290	0.2160	0.0982	0.069*
C8	0.4264 (3)	0.25086 (14)	0.18520 (16)	0.0423 (7)
C9	0.4599 (2)	0.30787 (13)	0.21748 (14)	0.0362 (6)
C10	0.4661 (3)	0.19347 (15)	0.21870 (16)	0.0549 (9)
H10	0.4449	0.1557	0.1970	0.066*
C11	0.6760 (3)	0.67523 (14)	0.27157 (14)	0.0408 (7)
H11	0.6429	0.6430	0.2431	0.049*
C12	0.6576 (3)	0.73636 (16)	0.24886 (15)	0.0491 (8)
H12	0.6125	0.7445	0.2063	0.059*

C13	0.7060 (3)	0.78405 (14)	0.28923 (16)	0.0468 (8)
H13	0.6956	0.8251	0.2741	0.056*
C14	0.7718 (2)	0.77134 (13)	0.35386 (14)	0.0367 (6)
C15	0.8255 (3)	0.81935 (14)	0.39966 (17)	0.0464 (7)
H15	0.8172	0.8610	0.3864	0.056*
C16	0.8867 (3)	0.80530 (15)	0.46072 (16)	0.0491 (8)
H16	0.9198	0.8373	0.4895	0.059*
C17	0.9027 (2)	0.74159 (14)	0.48317 (14)	0.0388 (7)
C18	0.9684 (3)	0.72468 (15)	0.54706 (15)	0.0475 (8)
H18	1.0030	0.7552	0.5774	0.057*
C19	0.9806 (3)	0.66304 (16)	0.56400 (15)	0.0483 (8)
H19	1.0238	0.6511	0.6059	0.058*
C20	0.9279 (3)	0.61835 (14)	0.51804 (14)	0.0402 (7)
H20	0.9375	0.5765	0.5302	0.048*
C21	0.8526 (2)	0.69322 (13)	0.43960 (12)	0.0308 (6)
C22	0.7853 (2)	0.70819 (13)	0.37350 (13)	0.0310 (6)
C23	0.6369 (3)	0.51558 (15)	0.45537 (15)	0.0413 (7)
C24	0.5619 (3)	0.48871 (19)	0.50365 (18)	0.0600 (10)
H24A	0.5593	0.4437	0.4983	0.072*
H24B	0.6037	0.4975	0.5492	0.072*
O7	0.3967 (2)	0.64187 (12)	0.38792 (14)	0.0622 (7)
H7A	0.345 (3)	0.630 (2)	0.407 (2)	0.093*
H7B	0.449 (3)	0.6154 (16)	0.393 (2)	0.093*
O8	0.8093 (2)	0.39279 (12)	0.54661 (12)	0.0548 (6)
H8A	0.870 (2)	0.4015 (19)	0.5751 (16)	0.082*
H8B	0.795 (4)	0.4228 (14)	0.5223 (18)	0.082*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02758 (14)	0.02503 (16)	0.0631 (2)	0.000	0.02148 (13)	0.000
Cd2	0.02656 (11)	0.02609 (12)	0.03117 (12)	-0.00091 (7)	0.01250 (8)	-0.00017 (8)
N1	0.0353 (12)	0.0292 (13)	0.0587 (16)	-0.0019 (10)	0.0106 (11)	0.0041 (11)
N2	0.0343 (11)	0.0322 (13)	0.0310 (12)	0.0016 (10)	0.0103 (9)	0.0010 (10)
N3	0.0362 (12)	0.0311 (13)	0.0324 (12)	0.0007 (9)	0.0128 (10)	0.0015 (10)
O1	0.0385 (11)	0.0575 (14)	0.0496 (13)	-0.0221 (10)	0.0201 (10)	-0.0225 (11)
O2	0.0295 (9)	0.0364 (11)	0.0350 (10)	-0.0037 (8)	0.0127 (8)	-0.0059 (8)
O3	0.0409 (12)	0.0809 (19)	0.0837 (18)	-0.0104 (12)	0.0299 (12)	-0.0349 (15)
O4	0.0417 (12)	0.0665 (17)	0.0543 (14)	-0.0193 (11)	0.0172 (10)	0.0069 (12)
O5	0.0424 (12)	0.0763 (18)	0.0572 (14)	0.0027 (11)	0.0247 (11)	0.0284 (12)
O6	0.0500 (12)	0.0432 (13)	0.0642 (14)	0.0047 (10)	0.0316 (11)	0.0120 (11)
C1	0.0264 (12)	0.0305 (15)	0.0335 (14)	0.0007 (10)	0.0101 (11)	0.0031 (11)
C2	0.0320 (13)	0.0345 (15)	0.0319 (14)	-0.0093 (11)	0.0116 (11)	-0.0011 (11)
C3	0.0364 (15)	0.0452 (19)	0.064 (2)	-0.0122 (13)	0.0230 (15)	-0.0141 (16)
C4	0.0331 (15)	0.072 (2)	0.0319 (16)	-0.0175 (15)	0.0157 (12)	-0.0220 (15)
C5	0.0461 (18)	0.046 (2)	0.060 (2)	-0.0029 (15)	0.0047 (16)	0.0103 (16)
C6	0.055 (2)	0.065 (3)	0.056 (2)	-0.0097 (18)	0.0013 (17)	0.0028 (18)
C7	0.055 (2)	0.050 (2)	0.067 (2)	-0.0192 (17)	0.0125 (17)	-0.0137 (18)

C8	0.0390 (15)	0.0310 (16)	0.061 (2)	-0.0066 (12)	0.0186 (15)	-0.0038 (14)
C9	0.0298 (13)	0.0275 (15)	0.0547 (18)	-0.0018 (11)	0.0167 (12)	-0.0005 (12)
C10	0.061 (2)	0.0271 (16)	0.080 (3)	-0.0087 (14)	0.0217 (18)	-0.0086 (15)
C11	0.0446 (16)	0.0415 (18)	0.0365 (16)	0.0027 (13)	0.0082 (13)	-0.0006 (13)
C12	0.0499 (18)	0.058 (2)	0.0382 (17)	0.0103 (16)	0.0056 (14)	0.0115 (15)
C13	0.0520 (18)	0.0348 (17)	0.057 (2)	0.0097 (14)	0.0190 (16)	0.0129 (15)
C14	0.0374 (14)	0.0297 (15)	0.0468 (17)	0.0027 (12)	0.0172 (13)	0.0032 (12)
C15	0.0513 (18)	0.0258 (16)	0.063 (2)	-0.0011 (13)	0.0137 (16)	-0.0008 (14)
C16	0.0548 (18)	0.0301 (17)	0.061 (2)	-0.0092 (14)	0.0079 (16)	-0.0080 (15)
C17	0.0391 (15)	0.0344 (16)	0.0444 (17)	-0.0051 (12)	0.0118 (13)	-0.0064 (13)
C18	0.0512 (18)	0.048 (2)	0.0405 (18)	-0.0096 (15)	0.0005 (14)	-0.0127 (15)
C19	0.0488 (18)	0.058 (2)	0.0365 (17)	-0.0036 (16)	0.0026 (14)	0.0002 (15)
C20	0.0440 (16)	0.0386 (17)	0.0385 (16)	0.0026 (13)	0.0090 (13)	0.0035 (13)
C21	0.0305 (13)	0.0308 (15)	0.0341 (15)	-0.0005 (11)	0.0138 (11)	-0.0013 (11)
C22	0.0293 (13)	0.0297 (15)	0.0367 (15)	-0.0010 (11)	0.0129 (11)	-0.0001 (12)
C23	0.0432 (16)	0.0452 (18)	0.0407 (17)	-0.0085 (14)	0.0210 (13)	0.0028 (14)
C24	0.0496 (19)	0.076 (3)	0.062 (2)	0.0037 (18)	0.0282 (17)	0.0248 (19)
O7	0.0657 (17)	0.0497 (16)	0.0671 (17)	-0.0044 (13)	0.0022 (13)	0.0110 (13)
O8	0.0580 (14)	0.0522 (15)	0.0531 (16)	0.0038 (12)	0.0081 (11)	0.0067 (11)

Geometric parameters (Å, °)

Cd1—O1 ⁱ	2.2873 (19)	C6—C7	1.366 (5)
Cd1—O1	2.2873 (19)	С6—Н6	0.9300
Cd1—N1	2.315 (2)	С7—С8	1.399 (4)
Cd1—N1 ⁱ	2.315 (2)	С7—Н7	0.9300
Cd1—O2	2.3667 (17)	C8—C9	1.402 (4)
Cd1—O2 ⁱ	2.3667 (17)	C8—C10	1.433 (4)
Cd1—C1 ⁱ	2.683 (2)	C9—C9 ⁱ	1.447 (5)
Cd2—O4 ⁱⁱ	2.331 (2)	C10—C10 ⁱ	1.349 (6)
Cd2—O6	2.341 (2)	С10—Н10	0.9300
Cd2—O2	2.3613 (17)	C11—C12	1.389 (4)
Cd2—N2	2.362 (2)	C11—H11	0.9300
Cd2—N3	2.377 (2)	C12—C13	1.355 (4)
Cd2—O5	2.426 (2)	C12—H12	0.9300
Cd2—O3 ⁱⁱ	2.545 (3)	C13—C14	1.402 (4)
N1—C5	1.318 (4)	С13—Н13	0.9300
N1—C9	1.363 (3)	C14—C22	1.409 (4)
N2—C11	1.328 (3)	C14—C15	1.438 (4)
N2—C22	1.357 (3)	C15—C16	1.330 (4)
N3—C20	1.324 (3)	C15—H15	0.9300
N3—C21	1.357 (4)	C16—C17	1.438 (4)
O1—C1	1.249 (3)	С16—Н16	0.9300
O2—C1	1.274 (3)	C17—C21	1.407 (4)
O3—C4	1.239 (4)	C17—C18	1.409 (4)
O3—Cd2 ⁱⁱ	2.545 (3)	C18—C19	1.364 (4)
O4—C4	1.265 (4)	C18—H18	0.9300

O4—Cd2 ⁱⁱ	2.331 (2)	C19—C20	1.386 (4)
O5—C23	1.241 (4)	С19—Н19	0.9300
O6—C23	1.248 (3)	C20—H20	0.9300
C1—C2	1.497 (3)	C21—C22	1.443 (3)
C2—C3	1.514 (4)	C23—C24	1.516 (4)
C2—H2A	0.9700	C24—C24 ⁱⁱⁱ	1.448 (6)
C2—H2B	0.9700	C24—H24A	0.9700
C3—C4	1.509 (4)	C24—H24B	0.9700
С3—НЗА	0.9700	07—Н7А	0.791 (18)
С3—Н3В	0.9700	07—Н7В	0.804 (18)
C5—C6	1.384 (5)	O8—H8A	0.823 (18)
С5—Н5	0.9300	08—Н8В	0.806 (19)
01 ⁱ —Cd1—O1	168.31 (11)	С4—С3—Н3В	108.8
O1 ¹ —Cd1—N1	98.96 (9)	С2—С3—Н3В	108.8
O1—Cd1—N1	90.44 (8)	НЗА—СЗ—НЗВ	107.7
O1 ⁱ —Cd1—N1 ⁱ	90.44 (8)	O3—C4—O4	122.3 (3)
O1—Cd1—N1 ⁱ	98.96 (9)	O3—C4—C3	119.7 (3)
N1—Cd1—N1 ⁱ	73.37 (12)	O4—C4—C3	117.9 (3)
O1 ⁱ —Cd1—O2	115.59 (7)	N1—C5—C6	123.8 (3)
O1—Cd1—O2	56.00 (6)	N1—C5—H5	118.1
N1—Cd1—O2	145.11 (7)	С6—С5—Н5	118.1
N1 ⁱ —Cd1—O2	100.42 (7)	C7—C6—C5	118.5 (3)
O1 ⁱ —Cd1—O2 ⁱ	56.00 (6)	С7—С6—Н6	120.7
O1—Cd1—O2 ⁱ	115.59 (7)	С5—С6—Н6	120.7
N1—Cd1—O2 ⁱ	100.42 (7)	C6—C7—C8	119.9 (3)
N1 ⁱ —Cd1—O2 ⁱ	145.11 (7)	С6—С7—Н7	120.0
O2—Cd1—O2 ⁱ	102.76 (9)	С8—С7—Н7	120.0
$O1^{i}$ —Cd1—C 1^{i}	27.67 (7)	C7—C8—C9	117.7 (3)
O1—Cd1—C1 ⁱ	143.51 (8)	C7—C8—C10	122.7 (3)
N1—Cd1—C1 ⁱ	100.42 (8)	C9—C8—C10	119.6 (3)
N1 ⁱ —Cd1—C1 ⁱ	117.52 (8)	N1—C9—C8	121.8 (3)
O2—Cd1—C1 ⁱ	112.32 (7)	N1—C9—C9 ⁱ	118.86 (16)
O2 ⁱ —Cd1—C1 ⁱ	28.34 (7)	C8—C9—C9 ⁱ	119.32 (18)
O4 ⁱⁱ —Cd2—O6	115.91 (8)	C10 ⁱ —C10—C8	120.94 (18)
O4 ⁱⁱ —Cd2—O2	107.38 (7)	C10 ⁱ —C10—H10	119.5
O6—Cd2—O2	105.85 (7)	C8—C10—H10	119.5
O4 ⁱⁱ —Cd2—N2	95.84 (8)	N2-C11-C12	123.0 (3)
O6—Cd2—N2	137.87 (7)	N2—C11—H11	118.5
O2—Cd2—N2	88.71 (7)	C12—C11—H11	118.5
O4 ⁱⁱ —Cd2—N3	80.55 (7)	C13—C12—C11	119.5 (3)
O6—Cd2—N3	87.36 (8)	C13—C12—H12	120.3
O2—Cd2—N3	158.64 (7)	C11—C12—H12	120.3
N2—Cd2—N3	70.53 (7)	C12—C13—C14	119.8 (3)
O4 ⁱⁱ —Cd2—O5	166.83 (8)	С12—С13—Н13	120.1

O6—Cd2—O5	54.24 (7)	C14—C13—H13	120.1
O2—Cd2—O5	84.81 (7)	C13—C14—C22	117.3 (3)
N2—Cd2—O5	89.26 (7)	C13—C14—C15	123.1 (3)
N3—Cd2—O5	89.78 (8)	C22—C14—C15	119.6 (3)
O4 ⁱⁱ —Cd2—O3 ⁱⁱ	53.26 (7)	C16—C15—C14	121.2 (3)
O6—Cd2—O3 ⁱⁱ	83.13 (7)	C16—C15—H15	119.4
O2—Cd2—O3 ⁱⁱ	78.21 (8)	C14—C15—H15	119.4
N2—Cd2—O3 ⁱⁱ	138.96 (7)	C15—C16—C17	121.3 (3)
N3—Cd2—O3 ⁱⁱ	120.76 (8)	C15—C16—H16	119.3
O5—Cd2—O3 ⁱⁱ	127.25 (8)	C17—C16—H16	119.3
C5—N1—C9	118.2 (3)	C21—C17—C18	117.6 (3)
C5—N1—Cd1	127.3 (2)	C21—C17—C16	119.2 (3)
C9—N1—Cd1	114.31 (19)	C18—C17—C16	123.1 (3)
C11—N2—C22	118.1 (2)	C19—C18—C17	119.3 (3)
C11—N2—Cd2	125.57 (19)	C19-C18-H18	120.3
C22—N2—Cd2	116.27 (17)	C17—C18—H18	120.3
C20—N3—C21	118.2 (2)	C18—C19—C20	119.3 (3)
C20—N3—Cd2	125.52 (19)	С18—С19—Н19	120.4
C21—N3—Cd2	115.99 (17)	С20—С19—Н19	120.4
C1	94.09 (16)	N3—C20—C19	123.4 (3)
C1 - O2 - Cd2	129 59 (15)	N3—C20—H20	118 3
C1 - O2 - Cd1	89 78 (15)	$C_{19} - C_{20} - H_{20}$	118.3
Cd2 - Cd1	132 66 (8)	N_{3} C_{21} C_{17}	122 1 (2)
$C4-O3-Cd2^{ii}$	87.5 (2)	N3—C21—C22	118.2 (2)
$C4-O4-Cd2^{ii}$	96.86 (18)	C17—C21—C22	119.7 (3)
$C_{23} = O_{5} = C_{42}$	90 14 (17)	N2-C22-C14	122.3 (2)
$C_{23} = 06 = C_{d2}$	93 92 (18)	N_{2} C_{22} C_{21}	1187(2)
01 - C1 - 02	1201(2)	$C_{14} = C_{22} = C_{21}$	110.7(2)
01 - 01 - 02	1191(2)	05-023-06	121.7(3)
$0^{2}-0^{1}-0^{2}$	119.1(2) 120.8(2)	05 - 023 - 024	121.7(3) 121.3(3)
$C_{1} - C_{2} - C_{3}$	120.0(2) 113.1(2)	06-023-024	121.3(3)
C1 - C2 - H2A	109.0	C_{24}^{iii} C_{2	1163(4)
C3—C2—H2A	109.0	$C24^{iii}$ $C24^{iii}$ $C24^{iii}$ $H24^{iii}$	108.2
C1—C2—H2B	109.0	C23—C24—H24A	108.2
С3—С2—Н2В	109.0	C24 ⁱⁱⁱ —C24—H24B	108.2
H2A—C2—H2B	107.8	C23—C24—H24B	108.2
C4-C3-C2	114.0 (3)	H24A-C24-H24B	107.4
C4-C3-H3A	108.8	H7A = 07 = H7B	107 (4)
$C^2 - C^3 - H^3 A$	108.8	H8A = 08 = H8B	107(4)
	05 2 (2)	05 Cd2 O6 C23	-0.51(19)
OI-CdI-NI-CS	95.2 (5)		-0.31(18)
UI-CdI-NI-CS	-//.8 (3)	$03^{$	-14/.46 (19)
N1 [·] —Cd1—N1—C5	-1/.0(3)		-2.2 (3)
O2—Cd1—N1—C5	-92.7 (3)	Cd1—O1—C1—C2	179.6 (2)
O2 ¹ —Cd1—N1—C5	38.4 (3)	Cd2—O2—C1—O1	153.3 (2)
C1 ⁱ —Cd1—N1—C5	67.2 (3)	Cd1—O2—C1—O1	2.1 (3)

O1 ⁱ —Cd1—N1—C9	-89.39 (19)	Cd2—O2—C1—C2	-28.5 (3)
O1—Cd1—N1—C9	97.6 (2)	Cd1—O2—C1—C2	-179.7 (2)
N1 ⁱ —Cd1—N1—C9	-1.62 (14)	O1—C1—C2—C3	-37.5 (4)
O2—Cd1—N1—C9	82.7 (2)	O2—C1—C2—C3	144.2 (3)
O2 ⁱ —Cd1—N1—C9	-146.26 (19)	C1—C2—C3—C4	-175.1 (2)
C1 ⁱ —Cd1—N1—C9	-117.43 (19)	Cd2 ⁱⁱ —O3—C4—O4	0.8 (3)
O4 ⁱⁱ —Cd2—N2—C11	103.4 (2)	Cd2 ⁱⁱ —O3—C4—C3	-177.5 (2)
O6—Cd2—N2—C11	-116.4 (2)	Cd2 ⁱⁱ —O4—C4—O3	-0.8 (3)
O2—Cd2—N2—C11	-4.0 (2)	Cd2 ⁱⁱ —O4—C4—C3	177.4 (2)
N3—Cd2—N2—C11	-178.8 (2)	C2—C3—C4—O3	150.8 (3)
O5—Cd2—N2—C11	-88.8 (2)	C2—C3—C4—O4	-27.5 (4)
O3 ⁱⁱ —Cd2—N2—C11	66.3 (3)	C9—N1—C5—C6	-2.2 (5)
O4 ⁱⁱ —Cd2—N2—C22	-73.61 (18)	Cd1—N1—C5—C6	173.0 (3)
O6—Cd2—N2—C22	66.6 (2)	N1—C5—C6—C7	2.0 (5)
O2—Cd2—N2—C22	179.05 (18)	C5—C6—C7—C8	0.2 (5)
N3—Cd2—N2—C22	4.20 (17)	C6—C7—C8—C9	-1.9 (5)
O5—Cd2—N2—C22	94.23 (18)	C6—C7—C8—C10	175.8 (3)
O3 ⁱⁱ —Cd2—N2—C22	-110.64 (19)	C5—N1—C9—C8	0.3 (4)
O4 ⁱⁱ —Cd2—N3—C20	-78.7 (2)	Cd1—N1—C9—C8	-175.6 (2)
O6—Cd2—N3—C20	38.1 (2)	C5—N1—C9—C9 ⁱ	-179.5 (3)
O2—Cd2—N3—C20	167.36 (19)	Cd1—N1—C9—C9 ⁱ	4.7 (4)
N2—Cd2—N3—C20	-178.4 (2)	C7—C8—C9—N1	1.7 (4)
O5—Cd2—N3—C20	92.3 (2)	C10-C8-C9-N1	-176.0 (3)
O3 ⁱⁱ —Cd2—N3—C20	-42.3 (2)	C7—C8—C9—C9 ⁱ	-178.5 (3)
O4 ⁱⁱ —Cd2—N3—C21	94.91 (18)	C10—C8—C9—C9 ⁱ	3.7 (5)
O6—Cd2—N3—C21	-148.27 (18)	C7—C8—C10—C10 ⁱ	-176.7 (4)
O2—Cd2—N3—C21	-19.0 (3)	C9—C8—C10—C10 ⁱ	0.9 (6)
N2—Cd2—N3—C21	-4.78 (17)	C22—N2—C11—C12	0.9 (4)
O5—Cd2—N3—C21	-94.07 (18)	Cd2—N2—C11—C12	-176.0 (2)
O3 ⁱⁱ —Cd2—N3—C21	131.33 (17)	N2-C11-C12-C13	0.6 (5)
O1 ⁱ —Cd1—O1—C1	47.76 (16)	C11—C12—C13—C14	-1.3 (5)
N1—Cd1—O1—C1	-168.60 (18)	C12—C13—C14—C22	0.6 (4)
N1 ⁱ —Cd1—O1—C1	-95.37 (18)	C12-C13-C14-C15	-179.8 (3)
O2—Cd1—O1—C1	1.21 (15)	C13-C14-C15-C16	179.7 (3)
O2 ⁱ —Cd1—O1—C1	89.62 (17)	C22-C14-C15-C16	-0.8 (5)
C1 ⁱ —Cd1—O1—C1	83.1 (2)	C14—C15—C16—C17	0.6 (5)
O4 ⁱⁱ —Cd2—O2—C1	1.1 (2)	C15—C16—C17—C21	0.0 (5)
O6—Cd2—O2—C1	-123.3 (2)	C15—C16—C17—C18	179.1 (3)
N2—Cd2—O2—C1	96.8 (2)	C21—C17—C18—C19	0.0 (4)
N3—Cd2—O2—C1	110.3 (3)	C16—C17—C18—C19	-179.1 (3)
O5—Cd2—O2—C1	-173.8 (2)	C17—C18—C19—C20	-0.2 (5)
O3 ⁱⁱ —Cd2—O2—C1	-44.0 (2)	C21—N3—C20—C19	1.2 (4)
O4 ⁱⁱ —Cd2—O2—Cd1	140.17 (11)	Cd2—N3—C20—C19	174.7 (2)
O6—Cd2—O2—Cd1	15.78 (12)	C18—C19—C20—N3	-0.4 (5)

N2—Cd2—O2—Cd1	-124.11 (11)	C20—N3—C21—C17	-1.4 (4)
N3—Cd2—O2—Cd1	-110.69 (18)	Cd2—N3—C21—C17	-175.53 (19)
O5—Cd2—O2—Cd1	-34.73 (11)	C20—N3—C21—C22	179.1 (2)
O3 ⁱⁱ —Cd2—O2—Cd1	95.05 (12)	Cd2—N3—C21—C22	5.0 (3)
O1 ⁱ —Cd1—O2—C1	-171.79 (14)	C18—C17—C21—N3	0.9 (4)
O1—Cd1—O2—C1	-1.18 (15)	C16—C17—C21—N3	180.0 (3)
N1—Cd1—O2—C1	16.8 (2)	C18—C17—C21—C22	-179.6 (2)
N1 ⁱ —Cd1—O2—C1	92.65 (15)	C16—C17—C21—C22	-0.5 (4)
O2 ⁱ —Cd1—O2—C1	-113.61 (15)	C11—N2—C22—C14	-1.6 (4)
C1 ⁱ —Cd1—O2—C1	-141.66 (14)	Cd2—N2—C22—C14	175.58 (19)
O1 ⁱ —Cd1—O2—Cd2	38.54 (13)	C11—N2—C22—C21	179.4 (2)
O1—Cd1—O2—Cd2	-150.85 (14)	Cd2—N2—C22—C21	-3.4 (3)
N1—Cd1—O2—Cd2	-132.82 (13)	C13—C14—C22—N2	0.9 (4)
N1 ⁱ —Cd1—O2—Cd2	-57.02 (12)	C15—C14—C22—N2	-178.7 (2)
O2 ⁱ —Cd1—O2—Cd2	96.72 (11)	C13—C14—C22—C21	179.8 (2)
C1 ⁱ —Cd1—O2—Cd2	68.67 (12)	C15—C14—C22—C21	0.2 (4)
O4 ⁱⁱ —Cd2—O5—C23	-43.9 (5)	N3—C21—C22—N2	-1.1 (3)
O6—Cd2—O5—C23	0.51 (18)	C17—C21—C22—N2	179.4 (2)
O2—Cd2—O5—C23	114.3 (2)	N3—C21—C22—C14	179.9 (2)
N2—Cd2—O5—C23	-156.9 (2)	C17—C21—C22—C14	0.4 (4)
N3—Cd2—O5—C23	-86.4 (2)	Cd2—O5—C23—O6	-0.9 (3)
O3 ⁱⁱ —Cd2—O5—C23	43.4 (2)	Cd2—O5—C23—C24	179.8 (3)
O4 ⁱⁱ —Cd2—O6—C23	169.29 (18)	Cd2—O6—C23—O5	0.9 (3)
O2—Cd2—O6—C23	-71.82 (19)	Cd2—O6—C23—C24	-179.8 (3)
N2-Cd2-O6-C23	34.4 (2)	O5—C23—C24—C24 ⁱⁱⁱ	2.8 (6)
N3—Cd2—O6—C23	91.13 (19)	O6—C23—C24—C24 ⁱⁱⁱ	-176.5 (4)

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+2, y, -z+1/2; (iii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O7—H7A···O8 ⁱⁱⁱ	0.791 (18)	2.174 (19)	2.962 (4)	174 (5)
O7—H7B…O5	0.804 (18)	2.048 (19)	2.847 (3)	172 (4)
O8—H8A····O4 ^{iv}	0.823 (18)	2.04 (2)	2.857 (3)	169 (4)
O8—H8B…O6	0.806 (19)	2.015 (19)	2.818 (3)	174 (4)
Symmetry codes: (iii) $-x+1$, $-y+1$, $-z+1$; (iv) x , $-y+1$, <i>z</i> +1/2.			

